Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 672-678, 2014.
Article in English | WPRIM | ID: wpr-351020

ABSTRACT

Ammonium perchlorate (AP), mainly used as solid propellants, was reported to interfere with homeostasis via competitive inhibition of iodide uptake. However, detailed mechanisms remain to be elucidated. In this study, AP was administered at 0, 130, 260 and 520 mg/kg every day to 24 male SD rats for 13 weeks. The concentrations of iodine in urine, serum thyroid hormones levels, total iodine, relative iodine and total protein, and malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activity in thyroid tissues were measured, respectively. Our results showed that high-dose perchlorate induced a significant increase in urinary iodine and serum thyroid stimulating hormone (TSH), with a decrease of total iodine and relative iodine content. Meanwhile, free thyroxine (FT4) was decreased and CAT activity was remarkably increased. Particularly, the CAT activity was increased in a dose-dependent manner. These results suggested that CAT might be enhanced to promote the synthesis of iodine, resulting in elevated urinary iodine level. Furthermore, these findings suggested that iodine in the urine and CAT activity in the thyroid might be used as biomarkers for exposure to AP, associated with thyroid hormone indicators such as TSH, FT4.


Subject(s)
Animals , Male , Analysis of Variance , Catalase , Metabolism , Dose-Response Relationship, Drug , Homeostasis , Iodine , Metabolism , Urine , Malondialdehyde , Metabolism , Perchlorates , Pharmacology , Quaternary Ammonium Compounds , Pharmacology , Radioimmunoassay , Rats, Sprague-Dawley , Superoxide Dismutase , Metabolism , Thyroid Gland , Metabolism , Thyrotropin , Blood , Thyroxine , Blood , Triiodothyronine , Blood
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 672-8, 2014.
Article in English | WPRIM | ID: wpr-636732

ABSTRACT

Ammonium perchlorate (AP), mainly used as solid propellants, was reported to interfere with homeostasis via competitive inhibition of iodide uptake. However, detailed mechanisms remain to be elucidated. In this study, AP was administered at 0, 130, 260 and 520 mg/kg every day to 24 male SD rats for 13 weeks. The concentrations of iodine in urine, serum thyroid hormones levels, total iodine, relative iodine and total protein, and malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) activity in thyroid tissues were measured, respectively. Our results showed that high-dose perchlorate induced a significant increase in urinary iodine and serum thyroid stimulating hormone (TSH), with a decrease of total iodine and relative iodine content. Meanwhile, free thyroxine (FT4) was decreased and CAT activity was remarkably increased. Particularly, the CAT activity was increased in a dose-dependent manner. These results suggested that CAT might be enhanced to promote the synthesis of iodine, resulting in elevated urinary iodine level. Furthermore, these findings suggested that iodine in the urine and CAT activity in the thyroid might be used as biomarkers for exposure to AP, associated with thyroid hormone indicators such as TSH, FT4.

3.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 418-421, 2013.
Article in Chinese | WPRIM | ID: wpr-343660

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the mechanism of thyroid cytotoxicity mechanism of ammonium perchlorate (AP).</p><p><b>METHODS</b>Thyroid cells were cultured in vitro to a certain stage and then exposed to AP (0, 5, 10, 20, 40, and 60 mmol/L) in culture solution; the cultured cells and supernatant were collected. Cell viability was measured by MTT assay; cell apoptosis was determined by flow cytometry; the concentration of thyroglobulin was measured by enzyme-linked immunosorbent assay; the lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, and so on were measured by colorimetry.</p><p><b>RESULTS</b>The cells exposed to 60 mmol/L AP for 12, 24, 48, and 72 h had cell viabilities of 74.93%, 42.26%, 2.66%, and 0.99%, respectively, and the cells exposed to 40 mmol/L AP for 24, 48, and 72 h had cell viabilities of 73.15%, 30.91%, and 3.03%, respectively, all significantly lower than that of the control group (100%)(P < 0.05 or P < 0.01). The overall apoptosis rate of all AP-exposed cells was significantly higher than that of the control group; the cells exposed to 20, 40, and 60 mmol/L AP had early apoptosis rates of 15.70%, 15.84%, and 16.96%, respectively, significantly higher than that of the control group (9.54%)(P < 0.05 or P < 0.01); the cells exposed to 60 mmol/L AP had a late apoptosis rate of 16.54%, significantly higher than that of the control group (6.11%)(P < 0.05 or P < 0.01). The cells exposed to 40 mmol/L AP had a significantly higher LDH activity than the control group (0.70 U/ml vs 0.55 U/ml, P < 0.01). The cells exposed to 5 mmol/L AP had a significantly higher MDA level than the control group (1.08 mmol/L vs 2.36 mmol/L, P < 0.05).</p><p><b>CONCLUSION</b>AP can markedly change the cell morphology and decrease the cell viability of thyroid cells, which may be because AP inhibits cell proliferation, induces cell apoptosis, and destroys cell membranes. However, AP does not result in significant oxidative damage to thyroid cells.</p>


Subject(s)
Humans , Apoptosis , Cell Proliferation , Cell Survival , Cells, Cultured , Oxidative Stress , Perchlorates , Toxicity , Quaternary Ammonium Compounds , Toxicity , Thyroglobulin , Metabolism , Thyroid Gland , Metabolism , Pathology
SELECTION OF CITATIONS
SEARCH DETAIL